Graph-based multimodal semi-supervised image classification

نویسندگان

  • Wenxuan Xie
  • Zhiwu Lu
  • Yuxin Peng
  • Jianguo Xiao
چکیده

We investigate an image classification task where training images come along with tags, but only a subset being labeled, and the goal is to predict the class label of test images without tags. This task is important for image search engine on photo sharing websites. In previous studies, it is handled by first training a multiple kernel learning classifier using both image content and tags to score unlabeled training images and then establishing a least-squares regression (LSR) model on visual features to predict the label of test images. Nevertheless, there remain three important issues in the task: (1) image tags on photo sharing websites tend to be imperfect, and thus it is beneficial to refine them for final image classification; (2) since supervised learning with a subset of labeled samples may be unreliable in practice, we adopt a graph-based label propagation approach by extra consideration of unlabeled data, and also an approach to combining multiple graphs is proposed; (3) kernel method is a powerful tool in the literature, but LSR simply treats the visual kernel matrix as an image feature matrix and does not consider the powerful kernel method. By considering these three issues holistically, we propose a graphbased multimodal semi-supervised image classification (GraMSIC) framework to handle the aforementioned task. Extensive experiments conducted on three publicly available datasets show the superior performance of the proposed framework. & 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semi-supervised Method for Multimodal Classification of Consumer Videos

In large databases, the lack of labeled training data leads to major difficulties in classification. Semi-supervised algorithms are employed to suppress this problem. Video databases are the epitome for such a scenario. Fortunately, graph-based methods have shown to form promising platforms for Semi-supervised video classification. Based on multimodal characteristics of video data, different fe...

متن کامل

Graph Based Microscopic Images Semi and Unsupervised Classification and Segmentation

In this paper, we propose a general formulation of discrete functional regularization on weighted graphs. This framework can be used to on any multi-dimensional data living on graphs of arbitrary topologies. But, in this work, we focus on the microscopic image segmentation and classification with a semi and unsupervised schemes. Moreover, to provide a fast image segmentation we propose a graph ...

متن کامل

Graph-based semi-supervised learning with multiple labels

Conventional graph-based semi-supervised learning methods predominantly focus on single label problem. However, it is more popular in real-world applications that an example is associated with multiple labels simultaneously. In this paper, we propose a novel graph-based learning framework in the setting of semi-supervised learning with multiple labels. This framework is characterized by simulta...

متن کامل

Instance-level Semisupervised Multiple Instance Learning

Multiple instance learning (MIL) is a branch of machine learning that attempts to learn information from bags of instances. Many real-world applications such as localized content-based image retrieval and text categorization can be viewed as MIL problems. In this paper, we propose a new graph-based semi-supervised learning approach for multiple instance learning. By defining an instance-level g...

متن کامل

Semi-supervised Learning by Sparse Representation

In this paper, we present a novel semi-supervised learning framework based on `1 graph. The `1 graph is motivated by that each datum can be reconstructed by the sparse linear superposition of the training data. The sparse reconstruction coefficients, used to deduce the weights of the directed `1 graph, are derived by solving an `1 optimization problem on sparse representation. Different from co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 138  شماره 

صفحات  -

تاریخ انتشار 2014